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1 Introduction

A common assumption in machine learning is the independence and identical distribution (i.i.d.) of
the data samples, which states that training and test samples are independent and drawn from the
same probability distribution. Unfortunately, real-world data rarely satisfies this assumption. The
covariate shift assumption [10] states that the training data Xtr and test data Xtst are sampled from
two multivariate random variables Xtr and Xtst with different distributions p (Xtr) and p (Xtst),
while the conditional distribution of labels given the data p (Y |X) is assumed to be the same over
training and test data, i.e., p (Y |Xtr) = p (Y |Xtst). A common approach to perform covariate shift
adaptation (CSA) is through representation learning: learn a mapping f that projects the training
and test data onto new representations Ztr and Ztst having similar distributions p (Ztr) and p (Ztst),
then learn p (Y |Z) using standard machine learning algorithms [2].

Feature distribution learning (FDL) is an approach to representation learning that disregards the
problem of modeling the distribution of the original data and focuses instead on shaping a useful
distribution for the learned representations. Sparse filtering (SF) is a FDL algorithm that learns
a maximally sparse representation of the data [8]. SF has exhibited good performance in real
applications [8] and in previous work we showed that SF works by preserving the structure of the
data under the cosine metric, by generating hyper-conical filters in the original space of the data [13].

So far, FDL has never been used for CSA. We consider the possibility of exploiting the insensitivity
of FDL to the distribution of the original data in order to efficiently carry out CSA, especially for
high-dimensional data. We aim at combining the efficiency and the computational lightness typical
of FDL algorithms with the simplicity of the representation learning approach to for CSA.

In this paper we focus on the problem of CSA for high-dimensional data that exhibit a periodic
structure using a FDL approach. We propose a novel semi-supervised sparse filtering-based algorithm,
named periodic sparse filtering. We devised this algorithm to work with high-dimensional data that
are affected by covariate shift and that exhibit local similarities. This model is particularly relevant
for dealing with high-dimensional user-dependent data: when training and test data are collected
from different users, they may be described by different pdfs whose local behavior (areas high or low
density and conditional distributions) may be similar. In the following we offer a theoretical analysis
and an empirical evaluation of PSF.

2 Theoretical Analysis

Let us consider a semi-supervised setting in which we are given the training data Xtr, the correspond-
ing labels Ytr defining C classes, and the test data Xtst, with the assumptions of covariate shift
and periodic data structure. To devise a SF-based algorithm that performs CSA in this setting, we
need to enrich the original SF algorithm with two additional properties: (i) the ability to generate
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Figure 1: (a) Synthetic data: training samples in blue, test samples in red; positive-labeled samples as
crosses, negative-labeled samples as dots. (b) Illustration of a filter instantiated by SF. (c) Illustration
of a filter instantiated by PSF.

periodic filters through a sinusoidal non-linearity; and, (ii) the ability to capture the periodic structure
underlying the data through the label information.

We thus propose a novel algorithm, called periodic sparse filtering (PSF) that defines a new trans-
formation of the data f : RO → RL as Z = `2,col (`2,row (g (WX))), where W is a weight matrix,
`2,row is the `2-normalization along the rows, `2,col is the `2-normalization along the columns, and
g(x) is a positive element-wise sinusoidal function, such as 1 + sin(x). We can then prove the
following theorem that guarantees that PSF does indeed generate periodic filters:

Theorem 1 Let X(1) ∈ RO be a point in the original space RO and let Z(1) ∈ RL be the representa-
tion learned by PSF. Then, there are infinite points X(i) ∈ RO built from X(1) with period W−1kπ,
where W is the weight matrix of PSF and k is a vector of integer constants in Z, that maps to the
same representation Z(1).

Proof. See Section S.1 in the Supplementary Material for the proof.

To exploit the information carried by the labels we redefine the loss function as:

L
(
W;X,Ytr

)
=

N∑
i=1

L∑
j=1

Z
(i)
j −

C∑
k=1

λkAkk, (1)

where λk is a scaling factor and Aij is a block sub-matrix of Z containing the ith group of learned
features from the samples belonging to the jth class. The first term of the loss function pushes for
learning sparse representations, while the second term pushes the mass of the sparse representations
on the sub-matrices Akk, for 1 ≤ k ≤ C. Minimizing the loss in (1) leads to our PSF algorithm (see
Section S.2 in the Supplementary Material for the pseudo-code of the algorithm).

Overall, PSF can generate a periodic tiling of the original data space with a different frequency in
each dimension and with a displacement driven by the labeled data.

3 Empirical validation

We empirically validate our proposed PSF algorithm with synthetic and real data sets.

Synthetic data. We generate a synthetic data set with the following properties: (i) easily visualizable;
(ii) covariate shift affecting one dimension of the input; (iii) the labeling function being a periodic
function defined over the dimension exhibiting covariate shift (see Figure 1(a)). More details on data
generation can be found in Section S.3 in the Supplementary Material.

In our experiment, we train a SF and a PSF module, with learned dimensionality L = 2 (for
visualization purposes) and with the scaling factors λ1 = λ2 = 1 (to keep all the loss terms in the
same order of magnitude). We run off-the-shelf classification algorithms (linear SVM and RBF kernel
SVM) on the original data as a baseline, and on the SF and the PSF representations for comparison.

We evaluate the results using following methods: (i) we visualize example filters learned by SF and
PSF; (ii) we employ a Kolmogorov-Smirnov (KS) test to analyze the distribution of each feature [6],
testing the hypotheses (p-value 0.05) that the features of training and test data come from different
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Table 1: Synthetic data set: Kolmogorov-Smirnov statistical tests; classification accuracy on the
training and test data set, and percentage drop using a linear SVM classifier and a RBF kernel SVM
classifier.

Kolmogorov-Smirnov Linear SVM RBF SVM

Data (train,test) (positive,negative) Training Test P-drop Training Test P-drop

Raw 0.5 0.5 0.71 ± 0.03 0.51 ± 0.02 28.32 ± 1.39 0.98 ± 0.01 0.51 ± 0.02 48.02 ± 1.74
SF 0.0 0.0 0.60 ± 0.01 0.52 ± 0.01 13.21 ± 2.66 0.59 ± 0.01 0.51 ± 0.02 12.75 ± 3.10
PSF 0.3 ± 0.15 0.7 ± 0.15 0.75 ± 0.04 0.72 ± 0.05 4.10 ± 3.75 0.75 ± 0.04 0.70 ± 0.05 6.56 ± 4.13

distributions, and that the features for positive-labeled and negative-labeled data come from different
distributions; (iii) we report the classification accuracy on the training and the test data, and we
estimate cross-domain generalization with the metrics of percentage drop suggested in [11]. We
report the mean and the standard error computed over ten simulations with randomly re-sampled data.

Figures 1(b) and 1(c) show prototypical filters learned by SF and PSF, respectively. For each point
X(i) in the original data space, the plot shows the distance of the learned representation Z(i) from a
perfect 1-sparse representation. As expected, SF instantiates filters with a conical shape centered in
the origin of the original data space, while PSF generates periodic filters with arbitrary shape.

Table 1 reports the proportion of features exhibiting a different pdf according to the KS test. In
general, the KS test evaluates only the pdf of individual features p(Zj), and it can not assess the
pdf of the learned representation p(Z). Due to the independence copula, however, we can actually
assess the joint pdf of the learned representations p(Z) from the marginal distribution of each feature
p(Zj) in our experiment. For the raw data, the KS test easily detects covariate shift on one dimension
(X1) and a difference in the distributions of positive-labeled and negative-labeled data via a single
dimension (X1). For the SF representations, the KS test reveals that covariate shift adaptation takes
place as the feature distributions of the training and the test data appear to be identical. Unfortunately,
differences in the distribution of positive-labeled and negative-labeled data are lost. For the PSF
representations, the results on the KS test suggest that our proposed PSF algorithm leads to sparse
features that carry out covariate shift adaptation and retain the discriminative information defined in
the labels simultaneously.

Table 1 also reports the performance in classification. For the raw data, the linear SVM returns a
low performance as the data are not linearly separable. The kernel SVM reaches almost perfect
discrimination on the training data, but it clearly overfits, and its performance on the test data is
reduced to chance level due to covariate shift. For SF representations, classification accuracy is
always set to chance level, since any difference between data of different labels vanished. For PSF
representations, the classification accuracy is significantly higher than chance level, and the difference
between the performance on the training data set and the test data set is remarkably small, as is
evident from the percentage drop.

The experimental results suggest that PSF is able to provide representations that allow for learning
the conditional distribution of the labels from the training data and for generalizing it to the test data.

Real data sets. For experiments with real data, we considered emotional speech data sets, which are
highly regarded as a class of data affected by covariate shift [9]. We chose two emotional speech
data sets widely used in the affective computing community: Berlin Emotional (EMODB) [3] and
Vera am Mittag (VAM) [5]. EMODB is constituted of recordings of 10 German speakers, while
VAM contains emotional utterances of 47 speakers participating in a German talk show. All the
recordings are pre-processed into standard representations made up of 72-dimensional Mel-frequency
cepstrum coefficient (MFCC) feature vectors [4]. Samples from EMODB are associated with a
binary label denoting the presence or the absence of emotional content (1065 emotional samples,
146 non-emotional samples), while samples from VAM are provided with a binary label denoting
a state of high or low arousal (1091 high-arousal samples, 1404 low-arousal samples). Underlying
our experiments is the assumption that acoustic samples from each user are described by different
distributions, but each distribution shows regularities in relation to emotional labeling.

We follow a protocol similar to the one described for synthetic data experiments. We train an SF
and a PSF module, and we run the off-the-shelf linear SVM classifier on the raw data and on the
learned representations. We set the learned dimensionality L = 80 (following the conservative
decision of preserving the approximate dimensionality of the original samples); we also set the
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Table 2: Real data set: UAR on the training and test data set, and percentage drop using a linear SVM
classifier for the EMODB and the VAM data sets.

Linear SVM

Data Train Test P-drop

Raw 0.60 ± 0.03 0.52 ± 0.01 11.86 ± 3.60
EMODB SF 0.65 ± 0.01 0.52 ± 0.01 20.42 ± 2.03

PSF 0.96 ± 0.002 0.52 ± 0.04 44.94 ± 3.93
PSF + KS crit. 0.85 ± 0.01 0.53 ± 0.05 37.09 ± 5.22

Raw 0.55 ± 0.02 0.52 ± 0.02 5.96 ± 1.11
VAM SF 0.66 ± 0.003 0.57 ± 0.01 14.45 ± 1.96

PSF 0.94 ± 0.001 0.53 ± 0.03 43.50 ± 1.83
PSF + KS crit. 0.76 ± 0.005 0.58 ± 0.02 23.88 ± 4.88

dimensions of the block matrices A11 and A22 to 35 (to balance the learned features among the
two classes). We set the other hyper-parameters (λ1 and λ2) to the optimal value found via cross-
validation. For each data set, we keep all the samples of one speaker for validation and all the
samples of another speaker for testing. Ten trials on each cross-validation configuration are run
to increase the reliability of our results. Because of the high variance exhibited by PSF in cross-
validation, we additionally devise a simple unsupervised criterion to retain half of the trials in
which the distance between the distribution of training and test data is minimal: the trial t′ is
retained if the average distance between learned features computed using the KS test is smaller
than the median of the average distance between learned features computed over all the trials t, i.e.,{

1
L

∑L
j=1KS

[
Ztr

j ;Ztst
j

]}
t′
< Mediant

{
1
L

∑L
j=1KS

[
Ztr

j ;Ztst
j

]}
t
.

Because of the high class imbalance, instead of the accuracy metric we use the unweighted average
recall (UAR) [1]: 1

K

∑K
k=1 recall(k), where recall(k) denotes the recall for class k and K is the

total number of classes. We report the mean and the standard error computed over all the trials.

Table 2 contains the results of classification using a linear SVM. For the raw data, the covariate shift
reduces the performance on the test data of the linear SVM close to chance level on both data sets.
For the SF representations, the performance on the test data is close to chance level for EMODB, but
higher for VAM. This may suggest the presence of different structures underlying the two data sets.
For the PSF representations, classification performance is close or even lower than the performance
of the standard SF algorithm. However, PSF representations have higher variance, as shown by the
standard error. This suggests that PSF may find good solution, as well as unsatisfactory solutions.
Adopting the criterion based on the KS test, we improve the final performance. The standard error is
constant, but, since it is computed on half trials, it reveals a decrease in the variance. For EMODB,
the overall increase in performance is limited, probably due to the difficulty of learning a periodic
structure from a highly unbalanced data set. For VAM data set, PSF provides a clear improvement
over raw representations and a moderate one over SF.

In summary, the above experimental results empirically verify our formal analysis and demonstrates
that our PSF algorithm may be effective in learning sparse features for covariate shift adaptation.

4 Discussion

Our research suggests that PSF may be a suitable algorithm to perform CSA under a proper assumption
about the structure of the data. Our theoretical analysis provides a firm ground to understand the
behavior of PSF and it offers an insight on how to develop alternative FDL algorithms for CSA. Our
experimental results verify our statements, despite more work is being carried out to address the
problem of high variance when working with real-world data.

CSA has been studied widely in the literature [7] and the PSF dynamics show resemblances with
sinusoid filters and Walsh filters, which are often used as bases for coding neurons [12]. However, to
the best of our knowledge, no one studied the use of algorithms for sparse FDL to perform CSA.

In conclusion, we believe that FDL algorithms may be a promising avenue of research for CSA. Their
simplicity, effectiveness and implicit insensitivity to the pdfs of the original data under covariate shift
make them a strong candidate for CSA with high-dimensional data.
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Supplementary Materials: Covariate Shift
Adaptation via Sparse Filtering for High-Dimensional

Periodic Data

S.1 Proof of Theorem 1

Theorem 2 Let X(1) ∈ RO be a point in the original space RO and let Z(1) ∈ RL be the representa-
tion learned by PSF. Then, there are infinite points X(i) ∈ RO built from X(1) with period W−1kπ,
where W is the weight matrix of PSF and k is a vector of integer constants in Z, that maps to the
same representation Z(1).

Proof. The proof of this proposition is based on the following logical steps: (a) rigorous definition
of the PSF computation; (b-e) back-computation through all the steps of PSF up to the input (`2-
normalization along the columns, `2-normalization along the rows, non-linearity, linear projection).

(a) Let X(1) =
[
x
(1)
1 x

(1)
2 · · · x

(1)
O

]T
and X(2) =

[
x
(2)
1 x

(2)
2 · · · x

(2)
O

]T
be two

points in the original space RO and let Z(1) = PSF
(
X(1)

)
=
[
z
(1)
1 z

(1)
2 · · · z

(1)
L

]T
and

Z(2) = PSF
(
X(2)

)
=
[
z
(2)
1 z

(2)
2 · · · z

(2)
L

]T
be the two representations in RL learned

by PSF. Recall that PSF is defined as PSF (X) = `2,col (`2,row (g (WX))), where we take the
non-linearity to be an element-wise positive sinusoidal function, that is g(x) = 1 + ε+ sin(x).

Now, let us suppose that the two learned representations are identical, that is Z(1) = Z(2).

(b) By definition of PSF, Z(1) = Z(2) implies:

`2,col

(
F̃(1)

)
= `2,col

(
F̃(2)

)
F̃

(1)
j√∑L

j=1

(
F̃

(1)
j

)2 =
F̃

(2)
j√∑L

j=1

(
F̃

(2)
j

)2 ,
where F̃(i) =

[
f̃
(i)
1 f̃

(i)
2 · · · f̃

(i)
L

]T
is the intermediate output of PSF defined as F̃ =

`2,row (g (WX)). Now, for the `2-normalization along the columns to be equal, it must hold
that: [

f̃
(1)
1

d(1)

f̃
(1)
2

d(1) · · · f̃
(1)
L

d(1)

]T
=
[

f̃
(2)
1

d(2)

f̃
(2)
2

d(2) · · · f̃
(2)
L

d(2)

]T
,

where d(i) =

√∑L
j=1

(
F̃

(i)
j

)2
is a sample-dependent scaling factor. Therefore, it follows that

Z(1) = Z(2) if and only if F̃(1) = λF̃(2) for any λ ∈ R.

(c) By definition of PSF, F̃(1) = λF̃(2) implies:

`2,row

(
F(1)

)
= λ`2,row

(
F(2)

)
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F
(1)
j√∑N

i=1

(
F

(i)
j

)2 = λ
F

(2)
j√∑N

i=1

(
F

(i)
j

)2 ,
where F(i) =

[
f
(i)
1 f

(i)
2 · · · f

(i)
L

]T
is the intermediate output of PSF defined as F = g (WX).

Now, for the `2-normalization along the rows to be equal, it must hold that:[
f
(1)
1

d1

f
(1)
2

d2
· · · f

(1)
L

dL

]T
= λ

[
f
(2)
1

d1

f
(2)
2

d2
· · · f

(2)
L

dL

]T
,

where dj =

√∑N
i=1

(
F

(i)
j

)2
is a feature-dependent scaling factor. Therefore, it follows that

F̃(1) = λF̃(2) if and only if F(1) = F(2).

(d) By definition of PSF, F(1) = λF(2) implies:

g
(
H(1)

)
= g

(
H(2)

)
1 + ε+ sin

(
H(1)

)
= 1 + ε+ sin

(
H(2)

)
sin
(
H(1)

)
= sin

(
H(2)

)
,

where H(i) =
[
h
(i)
1 h

(i)
2 · · · h

(i)
L

]T
is the intermediate output of PSF defined as H = WX.

Now, for the applications of the sinusoidal function to be equal, it must hold that:

sin
(
H(1)

)
= sin

(
H(2)

)
H(1) = arcsin

(
sin
(
H(2)

))
H(1) = H(2) + kπ,

where kj is a vector of feature-dependent periodic factors in Z.

(e) By definition of PSF, H(1) = H(2) + kπ implies:

WX(1) = WX(2) + kπ

X(1) = X(2) +W−1kπ.

Thus, there are infinite points X(i) ∈ RO built from X(1) with period W−1kπ that maps to the same
representation Z(1). �
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S.2 Pseudo-code of the PSF algorithm

Below we provide the pseudo-code for the PSF algorithm 1.

Algorithm 1 Periodic Sparse Filtering (PSF)
1: Input: training data Xtr, test data Xtst, training label Ytr

2: Hyper-params: learned dimensionality L, partitioning vector V, lambda vector λ

3: X← Xtr ∪Xtst

4: W← N (0, 1)
5: C ← #classes in Ytr

6: repeat
7: H←W ·X
8: F← 1 + ε+ sinH

9: F̃← F
(i)
j√∑N

i=1

(
F

(i)
j

)2

10: Z← F̃
(i)
j√∑L

j=1

(
F̃

(i)
j

)2

11: L ←
∑N

i=1

∑L
j=1 Z

(i)
j +

∑C
k=1

∑
i:X(i)∈Xtr∧Y(i)=k

∑
j:j∈Vk λk · Z(i)

j

12: W←W − η∇L
13: until termination condition for gradient descent is met

return Z

Algorithm 2 Derivative for PSF
1: Input: PSF output Z

2: ∂Z
∂F̃

(i)

j
←

√∑L
j=1

(
F̃

(i)
j

)2
−Z(i)

j ·
∑L

j=1 F̃
(i)
j∑L

j=1

(
F̃

(i)
j

)2

3: ∂Z
∂F

(i)

j
←

∂Z
∂F̃

(i)

j

√∑N
i=1

(
F

(i)
j

)2
−F̃(i)

j ·
∑N

i=1

(
∂Z
∂F̃

(i)

j
·F(i)

j

)
∑N

i=1

(
F

(i)
j

)2

4: ∂Z
∂H ←

∂Z
∂F · cosH

5: ∂Z
∂W ← λ ∂Z

∂H ·X
return ∂Z

∂W

1The source code is available at: https://github.com/EldarFeatel/PSF
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S.3 Detailed presentation of the experiments on the synthetic data set

In our synthetic data set simulation we generated a data set that would capture in a simplified way
the case of user-dependent data: different users have distributions located far apart in the feature
space, but their data exhibit local regularities. Training data and test data are then sampled from two
bivariate Gaussian pdfs and they are labeled in a binary way by a deterministic function. For the

training data set we generated 50 samples from Xtr ∼ N
([

2π
2

]
,

[
2 0
0 .5

])
and for the test

data set we generated 50 samples from Xtst ∼ N
([
−2π
2

]
,

[
2 0
0 .5

])
. Binary labels over the

training data and the test data are defined by a deterministic square wave function with period 1 on the
domain of the first feature. Figure 2 shows the synthetic data in two dimensions. Figure 3 shows the
projection of the synthetic data along the first dimension, that is, the dimension affected by covariate
shift. Each figure shows separately positive-labeled training data (blue crosses), negative-labeled
training data (blue dots), positive-labeled test data (red crosses), and negative-labeled test data (red
dots); moreover, it also shows the empirical and the real (where possible) distributions of the training,
test, positive-labeled and negative-labeled data.

Figure 4 shows actual filters instantiated by SF and PSF in relation to the data in the synthetic data
set simulation. The figure confirms that PSF is able to learn filters that better explain the data.

Figure 2: Synthetic data X used in the simulation.
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Figure 3: Projection of the synthetic data X used in the simulation along the first dimension.

Figure 4: (a) Illustration of a filter instantiated by SF. (b) Illustration of a filter instantiated by PSF.
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